Iterative patching and the asymmetric traveling salesman problem

نویسندگان

  • Marcel Turkensteen
  • Diptesh Ghosh
  • Boris Goldengorin
  • Gerard Sierksma
چکیده

Although Branch and Bound (BnB) methods are among the most widely used techniques for solving hard problems, it is still a challenge to make these methods smarter. In this paper, we investigate iterative patching, a technique in which a fixed patching procedure is applied at each node of the BnB search tree for the Asymmetric Traveling Salesman Problem. Computational experiments show that iterative patching results in general in search trees that are smaller than the usual classical BnB trees, and that solution times are lower for usual random and sparse instances. Furthermore, it turns out that, on average, iterative patching with the Contract-or-Patch procedure of Glover, Gutin, Yeo and Zverovich (2001) and the Karp-Steele procedure are the fastest, and that ‘iterative’ Modified Karp-Steele patching generates the smallest search trees. ∗Corresponding author: Faculty of Economic Sciences, University of Groningen, P.O. Box 800, 9700 AV Groningen,The Netherlands. FAX: +31-50-363-3720, Email: [email protected] (also downloadable in electronic version: http://som.rug.nl/)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Solving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm

The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorith...

متن کامل

Random gravitational emulation search algorithm (RGES (in scheduling traveling salesman problem

this article proposes a new algorithm for finding a good approximate set of non-dominated solutions for solving generalized traveling salesman problem. Random gravitational emulation search algorithm (RGES (is presented for solving traveling salesman problem. The algorithm based on random search concepts, and uses two parameters, speed and force of gravity in physics. The proposed algorithm is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Optimization

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2006